
Data handling in R: Exercise 2 Research Data MANTRA

April 2014 1

Data handling in R: Exercise 2

Version 4: April 2014

Authored by Dr Duncan Smallman, Dr Laine Ruus and Pauline Ward on behalf of

EDINA and Data Library, University of Edinburgh as part of the Research Data

MANTRA (Management Training) Project, funded by JISC MRD Programme

(2010-11): http://www.ed.ac.uk/is/data-library-projects/mantra

Contents

Data handling in R: Exercise 2 .. 1

Contents ... 1

Introduction .. 3

Exploring your data with plots ... 3

Figure 2.1: Value plot of the variable Temp from the riverquality data frame 4

Figure 2.2: Value plot of the variable AnDet from the riverquality data frame 6

Figure 2.3: Pairs plot of the first 8 variables from the river quality data frame 9

Working with arrays and matrices ... 11

Figure 2.4: Labelling the different dimensions within an array using

Arrayexample. .. 15

Figure 2.5: Adding columns and rows to an array. Example used is riverarray .. 18

http://www.ed.ac.uk/is/data-library-projects/mantra

Data handling in R: Exercise 2 Research Data MANTRA

April 2014 2

This work is licensed under the Creative Commons Attribution 2.5 UK: Scotland

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/2.5/scotland/

Data handling in R: Exercise 2 Research Data MANTRA

April 2014 3

Introduction

In Exercise 1 we covered some of the basics of entering data into R,

importing data from external .csv or tab-delimited files and generally got a feel

for working in the R environment.

In this exercise we will cover how to check that data was entered

correctly, how to correct errors with inputted data and how to add new data to

existing data frames. We will be using the River Quality data set (RiverQuality.txt

or RiverQuality.csv) imported in Exercise 1 and the example matrix and array we

previously created.

Exploring your data with plots

Before analysing any data, it is best practice to explore the data fully using

plots of the data. This is a very good way of checking for any apparent anomalous

data entries. R is a powerful graphics package as it was originally designed for

graphics. It is beyond the scope of this practical to focus on the graphic functions

of R. The very basic function is plot() and the argument can be structured in

two ways:

plot(x,y) – a co-ordinate layout

plot(y~x) – a “y as predicted by x” which is the same as the “response variable

as predicted by an independent variable”.

In this instance each response variable is plotted as it appears in the data

frame and can be entered as plot(y) or plot(y~1). As an example we will use

the River Quality data set.

For multiple actions on a data frame, attach() may be used to save

having to enter the name of the data frame before each variable. However, be

warned that only a copy of the variable will be attached to the search path, and it

may cause confusion by masking the values in the original data frame. New

values assigned to the actual data frame will not be visible until it is detached

and attached again. Alternatively you can use with() to specify the data frame

(try typing “help(with)” for more details). We’ll start with the variable Temp. If

Data handling in R: Exercise 2 Research Data MANTRA

April 2014 4

you’ve closed the R GUI since completing Exercise 1, remember to load the

workspace from the R console, so that the variable riverquality will be available.

#introduction to plotting using with()

 with(riverquality,plot(Temp))

Figure 2.1: Value plot of the variable Temp from the riverquality data frame

A new window opens with a graph showing all the temperature values.

The rank or position of each value within the variable is shown along the x-axis.

Before we go on to discuss what the plot shows, there are a few useful

functions relevant for using plots to have a quick look at your data. By clicking on

the graphics window, new menu options will appear. Under the History menu

selecting “Recording” will mean you can scroll through multiple graphs once they

have been plotted.

Data handling in R: Exercise 2 Research Data MANTRA

April 2014 5

If we consider the plot for temperature, most points are clearly visible

with no very distinct outliers (anomalous data points). Towards the left hand

side of the graph there is one point which is below 3°C. As it is only a few degrees

lower than the next lowest value (towards the right hand side) of the graph, we

would assume that we had not made a data entry mistake. To check which value

is the apparent outlier we can use either which() or subscripts (using square

brackets “[]”).

#different methods for checking apparent outliers

with(riverquality,which(Temp<3))

which(riverquality$Temp<3)

riverquality$Temp<3

We get the same answer, given as the row number, 150, but shown differently.

Using which(), the result is given as just the row number in

riverquality$Temp. Using “riverquality$Temp<3” prints the entire column

as a set of TRUE, FALSE or NA responses for each cell, and involves counting

which value meets the TRUE criterion.

Data handling in R: Exercise 2 Research Data MANTRA

April 2014 6

Figure 2.2: Value plot of the variable AnDet from the riverquality data frame

 Subscripts are the key to navigating around a data frame, matrix or array and

are just x, y (and z in case of arrays) co-ordinates, as in [row no., column no.]. To

access the value in row 35 within the column Temp we enter:

 riverquality[35, "Temp"]

[1] 9.691837

To edit the value we just assign it a new value:

 #assigning a value using subscripts

 riverquality[35,"Temp"]<-4

 riverquality[35,"Temp"]

Data handling in R: Exercise 2 Research Data MANTRA

April 2014 7

 [1] 4

If using the column name it is IMPORTANT enclose the text in speech marks (""),

otherwise R will not recognise what you are trying to do and will report either an

error message or NULL.

There is another way of viewing the entire row (and the exact value we

are looking for), using fix() to launch the data editor:

 #using fix to edit a data frame

 fix(riverquality)

Scroll down the resulting spreadsheet to row 35 and we see the same

result as if using subscripts. To edit a cell, select the cell and enter the new value.

The data editor is also useful for scanning your data and changing any incorrect

values that are not obvious from using plots.

Plots can be useful for identifying any outlier which may need

investigation and may be incorrectly entered in the original spreadsheet. In the

riverquality data set this can be seen by plotting Chloride. The value is 417 and

appears to be anomalous. The original data set actually indicates that this is not

the case but it is important to check from your original record.

We need to check each variable. Work through the variables plotting each

one to find any outliers. A faster way would be to plot several graphs onto one

page. This is possible using par(mfrow=c(no. of rows, no. of columns)).

It should be noted that the more graphs that are put on the page the less detail is

visible.

#multiple plots per page

par(mfrow=c(1,3))

with(riverquality,plot(Temp))

with(riverquality,plot(pH))

with(riverquality,plot(Cond))

Data handling in R: Exercise 2 Research Data MANTRA

April 2014 8

Alternatively, pair plots are useful to initially explore data and can

identify possible incorrectly entered values. Again it will be easier to limit the

number of graphs per page:

 #using pair plots in data exploration

 pairs(riverquality[,5:12],upper.panel=NULL)

 pairs(riverquality[,13:18],upper.panel=NULL)

The subscripts here denote the column numbers to include (we know that the

first five columns are factors not variables. It is quicker to look up the column

numbers (using names(riverquality)) than typing out each column name,

which would look like this:

pairs(riverquality[,c("Temp","pH","Cond","SS","Ash","DO","BOD","Amm")

],upper.panel=NULL)

Note that doing it this way, we have to use c() to allow for the list of text

names. The result should look like figure 2.3. Pairs plots show where potential

sources of further investigation could be carried out and provide context for

some potential outliers. Chlorophyll and Chloride show the most distinct outliers

(though the original data set indicates these values are correct).

Data handling in R: Exercise 2 Research Data MANTRA

April 2014 9

Figure 2.3: Pairs plot of the first 8 variables from the river quality data frame

Data handling in R: Exercise 2 Research Data MANTRA

April 2014 10

Subscripts can also be used if we want to extract specific data from a large

dataset. For instance we may only be interested in a specific region of the UK,

such as the Scottish rivers, rows 482 to 668. We can extract these rows, dropping

the first column, ‘Region’, and creating a new object using just the subscripts:

scotriver<-riverquality[482:668,2:18]

names(scotriver)

Note: the new subset will contain the original case numbers, ie 482 through 668,

retained as ‘row.names’.

Alternatively we may want to compare river quality by country rather

than just by region. To do so, we need to create a new factor within the

riverquality data frame using ifelse(if this, replace with, else):

Using ifelse when creating a new factor variable

riverquality$country<-ifelse(riverquality$Region=="EA

Wales","Wales","England")

Using pattern matching to conditionally assign values

riverquality$country<-

ifelse(grepl("SEPA.*",riverquality$Region),"Scotland",riverqua

lity$country)

… and to ensure that country is a factor, finish with:

 riverquality$country<-as.factor(riverquality$country)

 levels(riverquality$country)

[1] "England" "Scotland" "Wales"

You may wish to save your factor as a csv file so it may be viewed or

manipulated in Excel:

Save your output as a csv file

write.table(riverquality,file="M:\\RDM\\Arrrr\\riverquality.cs

v",row.names=FALSE,sep=",")

Data handling in R: Exercise 2 Research Data MANTRA

April 2014 11

Now if we want to extract data specific to any country we can use which:

scotriver<-

riverquality[which(riverquality$country=="Scotland"),]

You will discover if you look at the levels of scotriver$River that all of

the labels from riverquality$River are shown (e.g. Mersey, Thames etc). This

is a bit untidy and will make any summary tables look untidy and full of “NA”. To

avoid this problem, remove the extraneous labels using droplevels():

scotriver

levels(scotriver$River)

scotriver <- droplevels(scotriver)

levels(scotriver$River)

[1] "CLYDE - GLASGOW GREEN "

[2] "DEE - GLENLOCHAR GAUGING STATION "

[3] "LOCHY - A830 ROAD BRIDGE"

[4] "SPEY - FOCHABERS "

[5] "TAY - PERTH (QUEENS BRIDGE) "

[6] "TWEED - NORHAM "

Working with arrays and matrices

Subscripts are most useful when navigating around arrays and matrices.

Here we will use the array and matrices created in Exercise 1. First we will label

the rows and columns of both using a variety of dimnames(). We need to first

specify which dimensions we are naming and then the names we are applying to

them. Rows are always the first dimension and columns the second (in the case

of arrays the separate tables form the third dimension).

dimnames(matexample)<-

list(paste("site",1:3,sep="."),paste(c("Quality","No.

Species", "Area")))

matexample

Data handling in R: Exercise 2 Research Data MANTRA

April 2014 12

> Quality No. Species Area

site.1 1 4 7

site.2 2 5 8

site.3 3 6 9

The use of the paste() function achieves the same result as if we had entered

the names as below:

dimnames(matexample)<-

list(c("site.1","site.2","site.3"),c("Quality","No.Species","A

rea"))

Alternatively we can use colnames() and rownames() to specify the

column names and row names of the matrix. For the columns we have to create a

group containing the names before assigning the names to the columns:

QNA<-c("Quality", "No.Species", "Area")

colnames(matexample)<-QNA

rownames(matexample)<-

rownames(matexample,do.NULL=FALSE,prefix= "site ")

or

rownames(matexample)<-paste("site",1:3,sep=".")

N.B. If copying and pasting code from a word processor, you may get an error

message “Error: unexpected input in..” due to the slight difference in

the speech marks. For example speech marks (“”) generated by MS Word have a

slight angle to them (hex codes 201C and 201D) whereas in R they have to be

vertical ("", hex code 22).

Labelling the dimensions of an array uses the same method as labelling a

matrix. In this instance it is easier to create the labels prior to use. We’ll use the

array created in Exercise 1 (Arrayexample) with the data representing the

number of animal and plant species in sections of three different rivers:

Data handling in R: Exercise 2 Research Data MANTRA

April 2014 13

#labelling an Array

riverex<-paste("River.",1:3,sep="")

sectionex<-c("upper","upper middle","lower middle","lower")

biotaex<-c("no.fauna sp","no.flora sp")

dimnames(Arrayexample)<-list(sectionex,biotaex,riverex)

The result should be similar to that shown in figure 2.4.

Naming rows and columns will make it a bit easier to get to grips with

using subscripts to navigate around matrices and arrays. We’ll start with the data

in matexample. We may be interested in only the data in site.1 (the first row):

 matexample[1,]

> Quality No. Species Area

 1 4 7

Or the number of species for each site (column two):

 matexample[,2]

> site.1 site.2 site.3

 4 5 6

or

matexample[,"No.Species "]

>site.1 site.2 site.3

 4 5 6

As with adding new variables or data to an existing data frame, it is

possible to use a similar method to add columns or rows to matrices (arrays are

slightly problematic due to the greater number of dimensions). In this instance

we will use cbind() to add a column (a column containing the total for each

Data handling in R: Exercise 2 Research Data MANTRA

April 2014 14

row) and rbind() (to add a row). We’ll start with matexample, adding an

additional site and a new variable:

#adding a new row and column to a matrix

site.4<-c(4,7,10)

matexample<-rbind(matexample,site.4)

Total<-apply(matexample,1,sum)

matexample<-cbind(matexample,Total)

matexample

 Quality No.Species Area Total

site.1 1 4 7 12

site.2 2 5 8 15

site.3 3 6 9 18

site.4 4 7 10 21

Data handling in R: Exercise 2 Research Data MANTRA

April 2014 15

Figure 2.4: Labelling the different dimensions within an array using Arrayexample.

Data handling in R: Exercise 2 Research Data MANTRA

April 2014 16

Arrays are more problematic when it comes to adding data due to having

more than two dimensions and therefore, if wishing to keep the data within an

array, a different approach is taken. We will work with Arrayexample. In the first

instance we want to add an extra river (an additional third dimension):

riverarray<-c(as.vector(Arrayexample),rpois(8,2))

dim(riverarray)<-c(4,2,4)

We will need to add the dimension names again, as when coercing

Arrayexample into a vector all the names were stripped. We can use the same

names as previously used for Arrayexample with only two important alterations:

riverex<-paste("River.",1:4,sep="")

sectionex<-c("upper","upper middle","lower middle","lower")

biotaex<-c("no.fauna sp","no.flora sp")

dimnames(riverarray)<-list(sectionex,biotaex,riverex)

Compared to the earlier example, riverex has been expanded (to 1:4) and

dimnames now takes riverarray rather than Arrayexample as its argument.

The main difficulty comes with adding new rows or columns (the first and

second dimensions). The easiest method would be to create a completely new

array with the new data. Otherwise it is possible to use fix() to add data, paying

careful attention to where the data should be added:

fix(riverarray)

…will produce a window similar to that shown in figure 2.5. N.B. when you

earlier used fix() to open a matrix, it opened a spreadsheet-like editor,

whereas riverarray opens in a notepad-like editor because it is not a matrix. It is

very important to know where in the order of the existing data items the new

data items need to be added. In figure 2.5 the new data has been added. To

Data handling in R: Exercise 2 Research Data MANTRA

April 2014 17

understand how to read the data, the array in vector form is deciphered as: first

four numbers = upper to lower in column 1 (river 1); next four = upper to lower

in column 2 (river 1); next four = upper to lower in column 1 (river 2); next four

= upper to lower in column 2 (river 2) and so on. For ease, 0s have been added,

to create a new row called “source” (as shown under .Dimnames). We also need

to change the number of rows (under .Dim) from 4L to 5L (remember rows come

first when setting the number of dimensions).

Now when we close the window (clicking “yes” when asked if we want to save

the changes) we should get no error message. If we do it means that either we

have not added enough data or not set the correct number of dimensions and it

just means going back to ensure the correct values are added in the correct place.

We can add a new column using the same process. Take some time now to work

on this and experiment.

Data handling in R: Exercise 2 Research Data MANTRA

April 2014 18

Figure 2.5: Adding columns and rows to an array. Example used is riverarray

